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. ABSTRACT ;
\ !
This paper gives sufficient conditions to guarantee the existence of a

shock layer solution connecting two different ecuilibrium states in a van der

Waals fluid. In particular, the equilibrium states can belong to two

different phases of the fluid. The constitutive laws come from a modified

Korteweg theory which is compatible with the Clausius Duhem inequality. The

Clausius Duhem inequality in turn gives rise to a Liapunov function. The main

mathematical tool is the laSalle invariance principle.
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SIGNIFICANCE AND EXPLANATION
In the study of both static and dynamic phase transitions a typical model
has the constitutive law for stress given by Korteweg's theory. In this
theory, the classical form of Navier and Stokes has additional terms which
model the effects of interfacial capillarity and depend on the spatial
gradients of the density up to second order. It is these capillarity terms

which allow for smooth static phase transitions. Unfortunately, Korteweg's

theory is not compatible with the usual continuum theory of thermodynamics
since the Clausius-Duhem inequality is, in general, not satisfied. Recently,
a modified Korteweg theory has been developed by E. Dunn and J. Serrin, that
does not suffer from this defect. We use this theory to generate a set of
shock layer equations which are appropriate for shocks, including dynamic
phase transitions. One of the immediate benefits obtained from this theory is
that the Clausius-Duhem inequality gives rise to a Liapunov function for the
shock layer equations. We then give sufficient conditions for the existence

of a shock layer connecting two equilibrium points.
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DYNAMIC CHANGES OF PHASE IN A VAN DER WAALS FLUID
R. Hagan and J. Serrin
INTRODUCTION

In a paper by Serrin (1], Korteweg's theory of capillarity (2,3] was used to find
conditions for equilibrium between liquid and vapor phases of a van der Waals fluid. In a
subsequent paper, Silemrod (4] extended Serrin's approach to study dynamic changes of phase
in a van der Waals fluid, under the assumption of isothermal motion. This study was
further extended by Hagan and Slemrod in [5]. The next logical step was to drop the
assumption of isothermal motion. This was done for a van der Waals fluid in a paper [6] by
Slemrcd. In [6] he showed the existence of a shock layer that converts vapor to liguid and
the existence of a shock layer that converts liquid to vapor, under assumptions that render
the motion nearly isothermal. These assumptions are that the specific heat capacity at
conatant volume is large, the coefficients of heat conduction and viscosity are of the same
small order u, and the coefficients in the capillarity terms of the stress are of order

2.

One of the problems that complicates the study of dynamic changes of phase is the
incompatibility of the classical Korteweg stress with the Clausius Duhem inequality (7).
Recently, however, a modified Korteweg theory has been developed by Dunn and Serrin [8)
that is compatible with the Clausius Duhem inequality. In this theory they posit the
existence of a rate of supply of mechanical energy, the interstitial working, which takes
into account the working of longer range interactions. With this additional term in the
enerqgy balance it is posgible to derive a constitutive relation for stress that depends on
spatial gradients of the density and still satisfies the Clausius Duhem inequality. These
spatial gradient terms are used to model the effects of interfacial capillarity and at the
same time allow the existence of static phase transitions (1], [9]. That is, if we were to
use the classical form of Navier and Stokes for the stress then we would find that some

dynamic phase transitions exist, but no static ones (10], (t1}.
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In this paper we use a special form of the modified Xorteweg theory contained in
[8]. The Clausjus Duhem inequality then gives a direct proof of the increase of entropy
across a shock layer and it also provides a Liapunov function, in the sense of lLaSalle
[12), for the shock layer equations.

In section two of this paper we derive the shock layer equations and the increase of
entropy theorem. In section three we examine some of the properties of the Hugoniot curves
for a van der Waals fluid. In section four we state sufficient conditions to guarantee the

existence of a compressive shock layer in a van der Waals fluid.
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We congider one~dimensional steady flow of a van der Waals fluid. The flow may be
thought of as taking place in a cylinder of uniform cross-section parallel to the x-axis.
We will always assume that the fluid velocity u is positive so that the fluid flows from

left to right. The absolute temperature will be denoted by ©, and the specific volume

Figure 1

by v.

We will seek a smooth solution
satisfying the following boundary conditions, A

(2.1) (ux),v(x),8(x)) > { (ugvy,8,) as x » —=

(u(x)*',v(x)*,8(x)*) + (0,0,0) as
solution exists, it is called a shock layer. Of particular interest to us in this paper,
is the question of the existence of a shock layer, when (vo,eo) and (v1,61) belong to

different phases of a fluid. If such a shock layer exists it will be called a dynamic ]

phage transition.

{ulx),v(x),8(x)), x @ R of the equations of motion

x + ¥, and Vv"(x) * 0 as x * . 1If such a smooth

{ (u1,v1,81) as x + 4o




t
P
b
]

The halance laws for masa, momentum, and energy for a one-dimensional stea!" ¢! .,

the absence of external body forces and radiant heating are (see (8])

-1
(2.2) (v u)' =20,
-1
(2.3) v uwu' =T7' |
xx
-1
(2.4) v ue' = Txxu' + k' + q°',

where {( )' = d( )/dx. In addition to the balance laws we also have the Clausius Duhem
inequality,
(2.5) v lanr > (§) .
Here, Txx is the x component of stress in the x direction, e 18 the specific
internal energy, n is the specific entropy, k is the interstitial working, and q is
the heat flux.

We will have need of the following notation, if f is a function of v and 6, then

f1 - f(v1,91), fo = f(vo.eo), and [f] = £, - f,.

Theorem 1.1. (The increase of entropy across a shock layer.)

Suppose q = 0 whenever 8' = 0. Then n‘ > no for any shock layer.
Proof.

Integration of (2.2) gives
(2.7) u(x) = mv(x),
for some constant m. Furthermore m > 0 since v > 0, and u > 0 by assumption. We
may now integrate (2.5) from x = =® to x = 4o, ¢to0 obtain,

_ gu
nn(n1 no) > 9 .
But 6’ =0 at x = t®, hence

(2.8) n, >n

0°
In addition to the balance laws and the Clausius Duhem inequality we need to specify
the constitutive structure of the fluid. We shall use the following special form of a
modified Korteweg theory developed by J. E. Dunn and J. Serrin (8]. The two main features
of this theory that makes it useful for work in phase transions are the preservation of the

Clausius Duhem inequality and the occurrence of higher gpatial derivatives in the

constitutive relation for stress.
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The constitutive relations are (specialized to one-dimensional flow from equations

(1.26) and (1.27) of [8])

2
L]
(2.9) K = 21"—“}"— ,

2
(2.10) T = -p+ (A + 2u)u’ -gg“'" - 20

v'e!' - ov" ,

XX 2 EL]
(2.11) q = k',
(2.12) V= ; + g (v')2 , the specific Helmholtz free energy,

~ 1 30 2
(2.13) n=ne- 230 (v*)" ,
(2.14) e-3+1(o-833)(v')2
¢ 2 a8 !

where 0 = cv'3 and ¢ 1is the surface tension coefficient. Here n and e are the

equilibrium entropy and internal energy. They are functions of v and 6 only, as is the
pressure p. Furthermore, these quantities satisfy the classical Maxwell relationghips of
thermodynamics. In general 0, A, u, X are positive continuous functions of v and 6,
while o9, p, ;, and 7 are C1.

In this paper we shall restrict ourselves to the case where p and : satisfy the

following hypotheses,

RO a
(H1) p(v,0) = e ;3 , for all (v,0) e Q ,
(H2) c = 3; (v,9) > 0 for all (v,0) e Q
v ae ’ ’ [ [

where 1 is defined as {(v,9) : b < v <e, 0 <6 <®»}, Here R,b, and a are positive

constants and c, is the specific heat at constant volume. (H1) is of course the van der

Waals equation of state.

-5-




Let us substitute (2.7) into (2.3) and (2.4) to obtain,

(2.15) m' =T ,
xx
{2.16) me' = (Txx“)' - T;xu +k''+q .

We can now put (2.15) in (2.16) to obtain,
1 2
(2.17) m{e + 2 0 ) = (Tu) 4k + gt
Now we may integrate (2.15) and (2.17) from == to x and apply the boundary condition
(2.1). This gives

(2.18) m(u = uy) = Tyx = Txxo .

~ 1 2 2
(2.19) mie ~ e + 2 (u - uo)) - Txx“ - Txxo“O +k+q.

0

We now insert (2.7}, (2.9), (2.10), (2.11) and (2.14) into (2.18) and (2.19) to obtain,

2
) L]
W-*_gv'e.+ﬂu_m(x+2u)v'+p‘Po*’ﬂl2(V-V°)‘0,

(2.20) 20 v 2

and

(2.21) 6" = m{- 1 29 )24 3-8 +piv-v) - (v-y )2}
. 2 38 o' Po ()} 2 i .

It is convenient for us to define the following two functions,

(2.22) I(v,8) = p(v,8) - Py * nz(v - vo) '

and

(2.23) M(v,8) = e(v,8) —o +p (ve-v) ~2miv-v)>.
‘ ’ 0 0 0 2 0

We may now write (2.20) and (2.21) as a system of three first order ordinary differential

equations, namely

(2.24a) v = w ,
. 3¢ ., 30 '2
(2.24Db) ow' + 3% wh' + Pl m(A + 2ujw 4+ L(v,8) =0 ,
380
(2.24c) K8' = - : 'a'a_ wz + nﬁ(vle), (V:e) e .

We shall refer to this system as the shock layer eqguations.

-




Lemma 1.2.

Given (uO'VO'eD) and (ut,v

,91) with (vo,Bo), (v1,61) € 2, a shock layer exists

1
satisfying (2.1) if and only if there exist a solution to (2.24) satisfying,

(2.25) (v(x),w(x),8(x)) + [ (v ,0,8,) as x + —=
( (v1,0,81) ag x + ™ ,
and (2.7) is satisfied.
Lemma 1.3. (The Rankine-Hugoniot jump conditions).
A necessary condition for a shock layer to exist satisfying (2.1) is that the Rankine-

Hugoniot jump conditions are satisfied:

(2.26a) [u] = mlv] ,
(2.26b) (p] + m2[vl =0,

~ Pyt P
(2.26¢) fe} + 3 [vl =0 .
Proof .

If a shock layer exists satisfying (2.1) then there exists a solution of (2.24)
satisfying (2.25) and (2.7). Ilet x * ®; then we have from {2.24b) and (2.24c)
(2.27) My =1L, =0;

2 ~ 1 2, .2
hence ([p] +m [v] =0 and [e] + po[v] - 5 m {vl] = 0. Therefore

~ 1
e = 400 R = £ .
fe] + 3 (p1 + po)[v] 0. Now let x *+ ¥ in (2.7); then u1 mv1 and uo mvo

Therefore (u] = m(v].

We can solve the van der Waals equation of state for © in terms of v and p

a

algebraically. Hence we can define e(v,p) = ;(v,e). We may then define
- - pt Py
(2.28) H(v,p;vo,po) = e(v,p) ~ e(vo,po) + - (v - vo) .

The curve in the v - p plane consisting of all (v,p) satisfying H(v,p;vo,po) =0 is
called the Hugoniot curve generated by (vo,po). let us note that any state (vj.p1)
lying in the intersection of the Hugoniot curve with the straight line given by

p= po - mz(v - vo) will satisfy (2.26b,c) or equivalently (2.27). The corresponding

jump [u] is then given directly by (2.26a). Thus all conditions of (2.26) are satisfied.

-~
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It is convenient at this point to group together several thermodynamic identities
which will be useful in the following sections. First, we have the standard Gibbs identity
(2.29) 8dn = de + pdv

and the Maxwell relations

e _ 42
(2.30) 3v -] 36 = P
‘ ~
3an _ 3p
(2.31) 5 = 36 *

In addition, we shall need the formula

3p. .8 _8 (32
(2.32) |y =3 - o (ae) ,

which follows from the chain rule

together with (2.31) and the relation

¥ .
anlv v
From (2.30) one also gets Bg/av = a/v2 for the van der Waals equation of state, so

that in this case .

~ a
(2.33) e==-o+ ] c(8)ae .




SECTION 3

The van der Waals equation of state possesses non-monotone isotherms for 6 < ec,

where 6
c

is the critical temperature and monotone decreasing igotherms for 6 > ec. (See

Figqure 2). We will define the unstable region in the v - 6 plane as

3
(3.1) 8, = {tv.0) e 2 : 5c (V8 > 0} .

Thus ﬂu is bounded by

2
(3.2) 8 = Gu(v) z éﬂ v 3b) e b<v o,
v
a8 (v)
We have d“ » Z2alv - bl(v - 3b) and hence 8 (v) has only one stationary point
v kv‘ u
v. =3 on ({(b,®). Clearly, 9“(V) takes on its maximum value ec = 8a/27Rb, at
ve=y .
c
P.
'
]
|
t
:' critical isotherm 9=0_
]
t
]
]
(]
)
]
]
)
[}
i
!
]
i M
B
Y
]
]
] '
A
' e
|
i
[l ] Figure 2. Isotherms for a van der Waals fluid.
-9-
e s it S ——————————————




We now define

(3.3) 9’-((-1,0) en: ec<e < w}

(3.4) ﬂl-((v,e)eﬂze(v)<0<6,b<v<v}
u [+~ [+

(3.5) nu- {((v,0) e : e“(v) <9 <6c,vc<v<-}

Here Q' is the super-heated vapor region, ﬂz is the liquid region, and Qu is the

vapor region. (See Figure 3).

.
0 ﬁ\ .
f a
1
o, i
ta
]
}
{
|
|
{
1 .
0 j -+ ) >
b v v

Figure 3

We shall on occasion refer to the fluid state in terms of v and p instead of v

and 8. On such occasions it is useful to define the notation
&x = {(v,p(v,8)) : (v,8) € ﬂx} where x 1is 2,8,u,U, or empty.

Note that the map (v,8) *» (v,p(v,8)) is a homeomorphism of £ onto 5.

We now state and prove some useful lemmas concerning the Hugoniot curve.
Lemma 3.1.

Let }vo,po) e a and let I be any compact interval such that vo € IC (b,). Then
the Hugoniot curve generated by (vo,po) approaches the isotherm passing through (vo.po)

uniformly on I as inf c_(8) approaches infinity.
0< B¢

-10=-




- pt+to

R(v.pwo.po) = e(v,p) ~ ey * —7 1 (v = vg)
Hence
ap V:PlVolPo ap + 2 .
Rut
e . QE , 22 . cv(v - b)
p a8 EL) R
and so
(v -~ b) v -V
M Sv o
5; = R + 3 » +» ag inf cv(G) + o,

Therefore we can solve Hlv,p;vo,po) = 0§ for p as a function of v, say p = hiv),

inf ¢ (8) sufficiently large. Assuming that this is so, we have
0<8<e

s V- Vo, an, ge,P'Po
(3 * 2 Y et =0

We also have

3v  dv 30 Bv{p R SV'G -
Thus
c (v - b} p+tp v -V c (v =-Db)
dh v 3p, _a. _ 0 0 v
(3.6) il avle T 2 T (5 ) -

3
and hence LY » £ uniformily on 1 as inf ¢ (8) + ®. Thus
av avi® 0<B<=

v
h{v) - hivy) *+ i plz,0,)dz = plv,8.) - Py
0

uniformly on 1 as inf ¢ (8) » =, Therefore h{v) * p(v,Go) uniformly on 1 a8

0<0¢e>
inf ¢ (8) » =, since h(vy) = p(v_,8 ).
o’ 0
0<B¢™
let us define
R + cv

(3.7) Y = — .
¢
v

-1~
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Lemra 3.2.

It c, is constant, then H(v,p;vo,po) = 0 can be solved algehraically for p as a

function of v.

+ 1 -1
(3.8) P{(Yz )v_(Y )

a
i b} + = 2 -yv-1b) =

v

(y +1) Y-1 a_ _ -
po{ 3 vy~ 2 v - b} + 2 {(2 AR b} .
0

let p = h(v) be the solution of H(v,p;vo.pn) = 0 then

2y(v, - b)
- Y-1 - —2a_ 0 Y-2,>b _y-2_b
(3.9) (v "s’{h“')*y+1”o} Y+ 1 ay+n Pot v *t 2 v 2l
v o vo
where
Yy - 1)v° + 2p
(3.10) vs = 7+ .
Proof.
RO a
We have p = v -1 " "2 and hence
v
(v -~ b) a
8 = = (p +35)
v
~ a v=-> a a
e-cve-v " 1(p+v2)-v.

~ o~ pt+tp
Now H(v,p;vo,po) =@ ~ € + -—3——2 (v - vo), and s0 the results follow.

It is clear from (3.9) that h{(v) has exactly one singularity at, v = Vgr RAs
cv ¢+ o, then Y + 1 and Vg + by as <, + 0, then Y 4+ ® and Ve 4 Vor
Lemma 3.3.

Suppose ¢, is constant. Then

y-1
(3.11) lim h(v) = = ==——p .,
oo Y+ 150
Proof .

The result follows at once from formula (3.9).




In the next lemma we shall examine the behavior of h(v) as v approaches v_.

this end we define

2
(3.12) d-lgn{f:-po* — 7l - ey -2 *-‘-(—7—'—11#3-2-}}
Y(Y - 1)y + 2) Y v
v
where y = B
Leema 3.4.

Suppose c, is constant and {vgrpg) € 2. Then

[ -, if o = 1

(3.13) lim h(v) = { ’

v*vs Bl if o = =1

(4, 4f g =1

(3.14) 1im h(v) = { ’
v#v. (Sl if o = -1
(3.15) 1im h(v)-Y-:1 {(Y;') P, * (L; 2) +2—‘;}, if g=0.
v v v
s 8 8
Lerma 3.5.
= {2y - 1)b__
It ¢, is constant and o 1 or 0 and Y ?» 2 or Yo < - iz -7" then
A I 5§
h(v) ¢ TEEL Py for b < v« Vg *
Proof .
Let
2Y(v, = b)
0 Y-2.,b _Y=-2_b
(3.16) flv) = aivy + 1) Pot v * =3 v 2’
v 0 v
0
2a

so that the right hand side of ecuation (3.9) is given by f(v). Lemma 3.4 now

Yy + 1
follows since © = sign f(v‘). To ohtain lemma 3.5, we have by hypothesis that ¢ = 1

or 0 and hence f(v') > 0. We may write (3,16) as,

-13-
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(3.17) f(v)'f(v') *]—:-'—Z*.b—_l_'_g_!’_
v

If Y > 2, then f(v) 0 for b < v ¢ vs- Now suppose that 1 < ¥ < 2. The first and
second derivatives of f(v) are,

£ (v) = 2—;1 - 3—3 and £%(v) = -2(3—;-1 - -3—‘;) .
v v v v

- - 2b
Now f'(v) has only one zero at v = 223 Y and f"(v) = oy > 0. So that f(v) takes on
v
its minimum value at v. If v <V then f£(v) > f(v,) >0 for b> v < v, aince
o = 8gn f(v,) ~1 or 0 and f(v) strictly decreasingon b < v < v. But vg < v if

(2y - 1)b
(y - n@2-vy)

f(v) 20 for b < v« Vge Bow (3.9) can be written as

and only if vy < by definition. Thus under the hypotheses of the lemma

(3.18) (v = v {htv) + %: : Pyl = 12: 7 £(v)

and thus

(3.19) hv) € - X=1p for bcvew, .
Y+1°0 8

Lemma 3.6.

If the hypotheses of Lemma 3.5 are satisfied then the Rankine-Hugoniot jump conditions
cannot be satisfied if Py > 0 and vy < Vg

Proof .

In order for the Rankine-Hugoniot jump conditions to be satiafied, we must have

2 h(v1) = Pg
—m = v _v »
1 0
-zypo
and so h(v,) = Py > 0, since vy < vo. But by Lemma 3.5 we have h(v1) - Py < ;—:—? <0 )
and hence the conclusions follows.
i
I
-1~
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SECTION 4.
Theorem 4.1.

Assume that (v,.p,),(vo,po) € @1 \ closure (n“) and that v, < Vor

H(v,.p,tvo,po) = 0, and

Py =P
! 0. . m2 <0 .

Vi~ Vo

Furthermore, suppose that the chord connecting (v4,Py) to (vg/Pg) 1lies above the graph
of H(v,pivy,py) = 0 on the interval v, ¢ v < v, and is not tangent to the graph at
either end point. BAssume finally that the straight line extension of this chord does not
intersect the graph of H(v.p;vo,po) =0 when v > Vo and p > plv,0). Then there exists
a unique compression shock-layer connecting (vgeipg) to (v1,p1). Furthermore,

61 > 60, ;1 > ;0, the flow is supersonic at the state (v4,Pg), and subsonic at the
state (v,,p1).

The proof of Theorem 4.1 will be carried out with the aid of the following lemmas.

Figure 4

-15~




Lemma 4.2.
Fach of the equations M(v,8) = 0 and L(v,0) = 0 wuniquely define © as a function

of v, say O = OM(V) and GL(V). Furthermore under the hypotheses of Theorem 4.1 the

curve L = 0 intersects the v-axis in exactly two points v =b and v = Vv, where
v > Vg+ Moreover the curve L = 0 1lies above (below) the curve M = 0 in  when

v, < v« Vo (vo < v« v1). That is

(4.1) eL(v) > BM(v) for vy < Vv < v,
(4.2) GL(V) < SM(V) for Vg ¢ v<Ew .
Proof.
We have
M
(4.3) a8 =Sy >0
and
3L _ 3p
(4.4) 36 " 36 > 0

so that M = 0 and L = 0 can be solved for 6 as a function of v. 1In particular

v->b a 2
(4.5) 8 (v) ~ — (vz +py - m(v - vc)) .

It is clear from (4.5) that eL(b) = 0. In the v - p plane the line L = 0 intersects
the lower boundary of the region &, given by p = p(v,0), b < v < *®, only once since
L = 0 has negative slope and p = p(v,0) has positive slope. Therefore in the v - 6
plane the curve L = 0 intersects the v-axis (i.e. 6 = 0) only once in the interval
(b,=).

The curves 1 = 0 and M = 0 intersect in f if and only if the line L = 0 and
the curve H = 0 intersect in ﬁ, as follows immediately from the relation
(4.6) H=M+ % (v - vO)L .
Thus it is sufficient to prove that the curve L = 0 lies above the curve M = 0 for at
least one value of v in the interval (v,,v,}. We have

- cv(v - b) (v = vo)

(4.7) 53|v - 5 + 3 >0

-16-




in some neighborhood of (vo.po). Hence, by our assumption, in this neighborhood H > 0

on L=20 {f v« Vge Thus by (4.6), in this neighborhood we alsoc have M > 0 on
L =0 when v < vp.

From Lemwma 4.2 and equation (4.5) we see that the graph of GL(V) lies in & only
when the domain of Oh(v) is (b,¥). In the next lemma we shall show that the graph of

' ou(v) 1ies in fI when b < v < =,

lesma 4.3.

Under the hypotheses of Theorem 4.1 there is a constant 8 >0 such that BH(V) > 8
for all v > b, with equality holding only at v = ¥.
Proof.

The curve M = 0 lies asbove the curve L =0 for vg < Vv < v by lemma 4.2, and the
curve L = 0 lies above the v-axis for vy < v < V. It is sufficient to show that the

curve 0 = Gn(v) takes on its minimum value in the interval (b,®) at v = v. Now

(4.8) Hoe.y

and by (4.3), since c = cv(e). )

(4.9) -0

so that

(4.190) %% (v,0) = %% (v,0) = =L(v,0) .

From (4.5) and lemma 4.2 we see that L(v,0) < 0 when b < v < Vv and L{(v,0) > 0 when

v < v <*®, But

a8 (v)
(411 RS - INE IR
v

and so On(v) takes on it minimum at v = v and eH(V) > en($) for all v > b, with
equality holding only at v = v.
lemma 4.4.

Under the hypotheses of Theorem 4.1 the critical point (v1,0,91) is a saddle point

with a one-dimensional stable manifold and a two dimensional unstable manifold.
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Furthermore the fluid velocity is subsonic at the back state (v1,61) and {s supersonic at

the front state (vo,eo).
Proof.

The acoustic speed c is given by

2, %L 23,
(4.12) c 30‘“ v av|n .
Thus
(4.13) u? - o% = V(3R] + u?)

since u = mv. We need to show that

L) T
(4.14) Foln + ™ >0 at (v,00)
and

K TR
(4.15) av|n“" <0 at (v,,8,) .

Now by hypotheses the chord connecting (v1,91) to (vo,Bo) has slope -n? and lies
above the Hugoniot curve (H = 0 curve) in §l. Thus the slope of the curve H = 0 is
greater than the slope of the chord at (vo,eo).

From (2.28) and the Gibbs relation we have

an M an P = Py
{4.16) dn-(egl';‘v»f 3 )dp+(9-§%|P- s—)av .
Thus
a an an 3
(4.17) EE'H - - §;|p / SFHV - 55'; at (vg,pg)
and so

3 2
35‘; +m“ >0 at (vo,po) .
This proves (4.14). We next show (4.15).

By lemma 4.2 the curve L = 0 lies helow the curve M = 0 for vy < v < v and so

GGL a6

M
(4.18) av_ (v1) > v (v1) .

The strictness of the inequality can he shown to follow from the non-tangency hypothesis

and equation (4.4). Now

a0
L L , 9L
(4-19) & " /%
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and

a8
(4.20) - g% ) ™
thus by (4.18)
(4.21) D= g% %% - %% %é <0 at
L M
since 7 and 55 are positive. Substituting (4.3), (4.4), (4.8), and
aL 23 2
(4.22) - 55 +m

into (4.21) gives

3 2 3 3
(4.23) D= cv[se +m) - (8 55 -1) 5& at (v1,61) .

But L(v’,e') = 0 and (see Section 2)

285 (2. 2.
3%) " 3|7

(4.24) .
v

so that

(4.25) D cv(av'n +n°) .

Since D < 0, condition (4.15) follows at once.

To show that (v1,o,81) is a saddle point we linearize (2.24) about

obtain
v' AR v,
(4.26) w' = A w
. -
] 9 01
where
/ 0 1
/
1 3L A+ 2u
(4.27) A S 3v m o
m M o
X 3v
the entries being evaluated at (v1,91)-
Now at (v‘,91)
m 3L IM AL M
(4.28) det A = 7 (35 3% ~ 30 3v) "
by (4.21). Also
~19-

(v,,ei)
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[
A
{4.29) trace A = m(-—%——zﬂ +Z) >0

e

let p,,pz and 03 be the eigenvalues of A. Suppose first that these are all real and

< P, < Py Then 9,9293 = det A ¢ 0 hy (4.28) and so either ¢

> 0, and 93 > 0. But 0’

<0, pP_<0,

that o 2

1 1

and 93 <0 or p

' (4.29), and hence p1

< 0, 92 + 92 + 03 = trace A > 0 by

> 0 and Py 0. Next suppose that o

1

P and P are !

<0 ¥ 2 3

2 1

not all real, Let 91 = a - 18 and pz = a + i, where a,8 and 93 are all real.
Then (n2 + 32)93 = det A < 0; hence Py < 0 and 2a + Py = trace A > 0, so a > 0. A
Therefore the critical point (v,,0,91) is a saddle point with a one-dimensional stable

manifold and a two-dimensional unstable manifold.

Define
2
~ ~ Ow M
(4.30) o(v,w,0) = m(n - Nyt 3 - 3 -
Lemma 4.5.

Let (v(x),w(x),8(x)) be any solution of (2.24). Then
4
(4.31) £ (v(x) iz ,80x)) > 0 .
That {8 ¢ 1is nondecreasing along the trajectories of (2.24).
Proof .

We can use (2.13), (2.23), and (2.24c) to write (4.30) as

~ K6
(4.32) ¢=mn-n) -5,
But
(4.33) o wmn - (5) 50

by the Clausius-Duhem inequality, completing the proof.
Now o(v1,o,e,) = 0 and

20
(4.33) 35 (v/0,8) = :—2 Miv,8)

3%
so that b1 ] (v1,0,9) >0 (<0) for O > 6' (8 < 61). Hence
(4.34) °(v1,0,9) >0 for 8 # 61.
The function GL(V) has a maximum on the interval (b,V), say 6. since by (4.5) we gee

that 6 (b) = eL(6> =0 and 9 (v) >0 for b<v< V. Now
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20
(4.35) Te (v.0,8) = 3 L(v.8)

and so
3% =
(4.36) 3y (V/0,8) >0

since L > 0 to the right of the line v = v. Thus
(4.37) 8(v,0,8) > 0 for v > v,
since 0(v1,0.5) > 0. Equality occurs if 91 = 5).
We next show that the curve M = 0 intersects the line 6 = 8 for some v > v. Now

from (4.11) we have

a8
M Li{v,0 1 2 a
14.38) o (V) = ST . o (v = vy - py - 53)
v v v

and so by the definition of \-r,

dOH _
(4.39) ar (v) =0 .
aeH
Therefore, OH(v) 4o as v * ® gince by (4.38) T (v) 4+ as v t ®, Thus the

curve M = 0 intersects the line © = 6 for some ; > v. From (4.38) and (4.33) it is

clear that 9(;,0,9) >0 for 0 < 8 < 8.

Put
(4.40) ws= max _ -200(v,0,8)
v1<v<v
Bcocd
We define a hox B in phase space by
(4.41) Bn{(v,w,0)1v1<v<;1-;<v<;,5(9(5}.

Note that with the exception of the bottom of the box and the point (v,,o,e‘) we have
>0 on 3B.
Lemma 4.6.
Under the hypotheses of Theorem 4.1 every trajectory which intersects the bottom of
the box B leaves the box.
Proof .

We have from (2.24c)

L4
<>
Q

(5]

k8' = m(- woo+ M(v,e)) . .

1380
2

-21-
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From Lemma 4.3 the curve M = 0 does not drop below the line 6 = 8 in f. But

2! >0 a
39 <, and 8o

(4.42) M(v,8) €0 for b<v<® and 0 <8 <8

with equality holding only if (v,8) = (v,f). Now

360 830

(4.43) 3 ~°* 3
and by hypothesis ¢ > 0 and

8
(4.44) 1im inf -22 (v,9) 0 for b< v

EL)

8+0

so that

8
(4.44) a—a-g>o for b<v¢®

and 6 sufficiently small and positive. We can choose 8 smaller if necessary so that
(4.44) holds when 0 < © < 8. Thus 6' < 0 on the bottom of the box B with the possible
exception of (;,0,5). Therefore every trajectory which intersects the bottom of the box
at some point leaves the box at that point. -
Lemma 4.7.

Under the hypotheses of Theorem 4.1 one of the trajectories of the stable manifold of

(v1,0,61) enters the box B while the other never does. Thus there can be at most one

trajectory of (2.24) connecting (vo.o,ﬂo) to (v1.0,61).
Proof.

We need to show that the line tangent to the stable manifold is transverse to the
plane v = v, in phase space. This line is parallel to the eigenvector associated with
the negative eigenvalue p of (4.27). Llet (51,52.53)T be this eigenvector. Then we

have
(4.44)
£y £

We assert that 51 # 0, which is the required transversality condition. Suppose for

contradiction that 51 = 0. ‘Then from (4.44) and (4.27) we have
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52 = p§1 = 0

(4.45)
M

(kp - mcv)E3 =n3 51 =0 .

But xp - mc < 0. Hence 51 = Ez = 53 = 0, which is impossible.

Now suppose one of the trajectories forming the stable manifold of (v',0,0 ) crosses

1
the plane v = v, at some point. Then ¢ > ¢ at this point since

2
mow

20 °

(4.46) ®(v,w,0) = ®(v,0,6) +

and 0(v1,0,6) >0 for 9 ¢ 91 by (4.34). By lemma 4.5, ¢ is nondecreasing along
trajectories of (2.24), and so 0(v1,0,81) > 0. But °(v1,0,8’) = 0 and hence any
trajectory forming the stable manifold cannot cross the plane v = Vqe

If we replace x by =x in the system of ordinary differential equaiton (2.24) then
the direction of each trajectory in (2.24) wil be reversed. Wwe shall refer to (2.24)
with x replaced by -x as the reversed system. Note that ¢ decreases along any
trajectory of the reversed system and hence ¢ is a Liapunov function in the sense of
LaSalle for the reversed system.

Iet us denote by ( the trajectory of the reversed system that leaves (v1,0,61) and
enters B.
Lemma 4.8.

Under the hypotheses of Theorem 4.1 the trajectory () is bounded.
Proof.

We shall show that 0 is contained in B. For the reversed system, & is
nonincreasing along ( and hence & < 0 on ( since 0(v1,0,91) =0, But ¢ >0 on

3B with the exception of the point (v1,0,61) and the bottom face of B. Thus (

cannot cross 9B except possibly at the hottom face. But by Lemma 4.6 and the fact that

the gystem is reversed, every trajectory which intersects the bottom face enters B.

Thus ( cannot cross 9B and so it is bounded.




To complete the proof of Theorem 4.1 we need to show that () enters (vo,o,eo), that
is w(Q) = {(VO,O,BO)) for the reversed system. Since ¢ is a Liapunov function in the
sense of laSalle for the reversed system and ( is bounded, w(() 4is contained in the
largest invariant subset of S = {(v,w,0) € closure of B : ¢' = 0}, by lLaSalle's
invariance principle [12].

From (4.33) we have
woyr , xer?

(4.47) o = m' - 55 >

Now upon substituting (2.24c) and (2.13) into (4.47) we have

2 ,2
(4.48) o =2 0 2w+ S8
o2

Therefore &' = 0 implies w = 8' = 0 and by (2.24) also ow' + L =0 and M = 0 when
$' = 0. Thus the largest invariant subset of S 1is ((v1,0,61),(v0,0,80)}. But 6' 7 0
on 0 8o that ¢' < 0 somewhere on ( and hence ® < 0 on (. Therefore
w(() = {(vO,O,eo)} and so the trajectory (0 connects (V1,0.31) to (VO,O,QO)-

It remains to show that ;1 > ;0 and 91 > 90- The first follows from (2.8), since
(4.30) and (4.48) show that the equality cannot hold. The second follows from (4.11)
since L(v,0) < 0 for v, < v < v,

Fxample 1.

Suppose that Sy is a large constant, so that by Lemma 3.1 the Hugoniot curve
generated by (vo,po) }s near the isotherm p(v,ﬂo). Let us suppose that (vg,pg) is in
the vapor region and (v1,p1) is in the liguid region. Furthermore, suppose that the
straight line through (vq,pq) and (v4,py) intersects the Hugoniot curve at only these
two points (see Figure 5). ;

In this example the hypotheses of Theorem 4.1 are satisfied and hence there is a shock
connecting (v,,p,) to (v,,p,). The shock layers converts vapor in the equilibrjium

state (vo,po) into liquid in the equilibirum state (v1,p1). We shall call such a layer

a liquefaction layer (13].
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Example 2.

We keep the same set up as in Example 1, but with (v,py) also in the vapor region

and vy < vy

{gsee Figure 6).

Then there is a gas-gas compressive shock layer converting

gas in the more rarefied equilibrium state (vo,po) to gas in the hotter denser

equilibrium state (V1up1 )e
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Example 3.

Let us suppose that Sy is constant and 0 < c, < R, 8o that Y > 2. Let us

choose (vo,po) in either the vapor or super-heated vapor region, with vp > 7> and

Py > 0. Then o0 =1 by (3.12), and thus the only reachable states on the Hugoniot curve

are to the right of

(Y =~ Dvy + 2

Vg T Y + 1

by Lemma 3.6. Since Yo >7b and Y > 2 we have

(Y - 1)7b +2b 12b
87— .
vs> Y + 1 b Y+1>3b

But the liquid region lies to the left of v = 3b, and hence no liquification shock is

possible (see Figure 7).

PAN | | ‘
{ )
| L super-heated vapor reqion ]
i
l q !
{u ' Hugoniot curve
i 0<e, <
}a t v SR
! {
l R
e & critical isotherm .
4 1Y
T i
i by Vapor Region
| n unstable region 1
{ ] 3
T v : >
b s vO v |
Pigure 7 i
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